An Unsupervised Approach of Truth Discovery From Multi-Sourced Text Data
نویسندگان
چکیده
منابع مشابه
Unsupervised Discovery of Biographical Structure from Text
We present a method for discovering abstract event classes in biographies, based on a probabilistic latent-variable model. Taking as input timestamped text, we exploit latent correlations among events to learn a set of event classes (such as BORN, GRADUATES HIGH SCHOOL, and BECOMES CITIZEN), along with the typical times in a person’s life when those events occur. In a quantitative evaluation at...
متن کاملTruth Discovery from Conflicting Multi-Valued Objects
Truth discovery is a fundamental research topic, which aims at identifying the true value(s) of objects of interest given the conflicting multi-sourced data. Although considerable research efforts have been conducted on this topic, we can still point out two significant issues unsolved: i) single-valued assumption, i.e., current methods assume only one true value for each object, while in reali...
متن کاملSmartMTD: A Graph-Based Approach for Effective Multi-Truth Discovery
The Big Data era features a huge amount of data that are contributed by numerous sources and used bymany critical data-driven applications. Due to the varying reliability of sources, it is common to see conflicts among the multi-source data, making it difficult to determine which data sources to trust. Recently, truth discovery has emerged as a means of addressing this challenging issue by dete...
متن کاملthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
An Unsupervised Approach of Knowledge Discovery from Big Data in Social Network
Social network is a common source of big data. It is becoming increasingly difficult to understand what is happening in the network due to the volume. To gain meaningful information or identifying the underlying patterns from social networks, summarization is an useful approach to enhance understanding of the pattern from big data. However, existing clustering and frequent item-set based summar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2934469